
WoT.City: Decentralized Internet of Things
Software Framework for a Peer-to-Peer and

Interoperable IoT Device

Jollen Chen

January 5, 2017

WoT.City Open Source Project,
jollen@wotcity.com

Abstract. In recent years, the development of Internet of Things (IoT)
applications has become increasingly complex. Some studies have at-
tempted to address this problem. The common characteristic of these
studies is the ability to stream data to the cloud over the web. Moreover,
most software architectures presented in these studies do not provide IoT
interoperability; however, the OpenIoT platform does provide interopera-
ble IoT applications[1]. Notwithstanding several studies, most methods
do not provide peer-to-peer networking. This paper proposes a software
architecture that provides peer-to-peer IoT networking and interoperable
IoT application framework. This software architecture also provides a
flow-based programming environment for writing IoT applications.

Keywords: Internet of Things, Interoperability, Peer to Peer, Web of
Things, Flow-Based, Decentralized

1. Introduction

The motivation of this paper is to propose a new design software architecture
for the development of interoperable Internet of Things (IoT) applications. The
software architecture adopts W3C’s Web of Things (WoT) ontology. In addition,
the software architecture also provides peer-to-peer networking capabilities for a
decentralized IoT model.

This paper presents an overview of the WoT.City software framework. The soft-
ware framework is currently available as an open-source project, and it consists
of three sub-projects. Accessible at (a) wotcity.io (https://github.com/wotcity),
(b) devify.io (https://github.com/DevifyPlatform), and (c) flowchain.io
(https://github.com/flowchain). Given JavaScript’s current ubiquitous nature, it
is natural to use a JavaScript platform for the IoT. Thus, WoT.City offers a
100% JavaScript platform for the IoT.



2. Architectural Description

W3C’s WoT ontology provides a standards-based model to represent a physical
device, or the so-called physical object, as an application server [2]. An IoT
application server comprises a virtual representation of a physical object, and the
application runs as an application server on an IoT device. An IoT application
might be installed and run on an application processor-based high-performance
device or a microcontroller device. Typically, the Node.js JavaScript runtime is
used for high-performance devices, a JavaScript engines, such as the Mongoose
full-stack IoT platform [3] and JerryScript [4] are used for microcontroller-based
resource-constrained devices.

Fig. 1. Architectural design of WoT.City framework

As shown in Fig. 1, the WoT.City full-stack software framework is a three-layer
design. The first layer is responsible for dealing with HTTP, CoAP, and the
WebSocket communication protocol. The first layer also describes the IoT device
properties. This layer uses the WoT model. Accordingly, a physical device is
represented as a virtual thing with (a) protocols binding, (b) URL routing, (c)
event emitting and (d) request handler functionalities.

The broker server layer implements peer-to-peer communication, REST-style
RPC operations and a distributed hash table (DHT). The code size of the broker
server layer is extremely light weight; thus, it can run on laptops, mobile devices,
and even resource-constrained devices. It aims to help the WoT layer create
IoT application servers. To begin developing customized IoT application servers,
several project boilerplates can be downloaded through the WoT.City open source
project.



An IoT application typically uses the flow-based programming (FBP) paradigm.
The FBP paradigm defines applications as networks of black box processes that
exchange data across predefined connections by message passing[5]. Thus, the
application layer offers an FBP environment.

In addition, FBP is naturally component-oriented, and with WoT.City’s light
weight FBP engine, applications can be assembled with predefined components
that can connect as data processing networks.

Fig. 2. WoT.City framework components

Figure 2 shows the software components of the WoT.City framework. The WoT is
a use case for open markets of applications and services based on the roles of web
technologies. Moreover, it manages a physical device as a “Virtual Thing with
Thing Properties.” To implement this model, the “Thing Description” component
of the WoT.City framework describes “Thing Properties” in the JSON data
format. Consequently, the WoT represents the Virtual Thing in URI convention.
As shown in Listing 1, the URL Router component of the WoT.City framework
defines URIs to represent a Virtual Thing.

Listing 1. Virtual Thing in URI convention

[coap|ws]://[hostname]/object/[name]/send
[coap|ws]://[hostname]/object/[name]/viewer



A Virtual Thing is referred to as a “node” in this paper. In the WoT.City
framework, CoAP and WebSocket are the primary protocol bindings for a node.
CoAP is an application layer protocol intended for applications on constrained
devices. The WebSocket protocol provides a standardized way to facilitate real-
time data transfer.

As shown in Listing 1, the URIs can represent two types of nodes, i.e., sender
and viewer nodes. A sender node transfers time-series data to another node over
WebSocket or CoAP. A viewer node receives time-series data from other nodes.
In addition, the Request Handlers component accepts incoming requests, receives
data and triggers necessary events.

The WoT layer makes distribution possible by providing a service contract without
exposing server side implementation details [6]. In addition, the broker server layer
encapsulates the peer-to-peer and RPC technical details on the device server side.
Typically, the broker architectural pattern can be utilized to structure distributed
software systems with decoupled components that interact by remote service
invocations [7]. Thus, the broker server layer implements the broker architectural
pattern to hide such technical details.

3. Peer-to-Peer Network

MQTT, a frequently referenced IoT technology, is a publish-subscribe-based
lightweight messaging protocol for use on top of TCP/IP. In MQTT networks,
connected nodes are managed by MQTT brokers. In addition, MQTT brokers
export their nodes for external visibility. Note that the WoT.City framework’s
broker server does not export its nodes.

As shown in Fig. 3, in WoT.City networks, nodes connected to the same broker
are “grouped” together with their broker as a virtual node, i.e., a virtual node
comprises a broker and its corresponding nodes. In this manner, the broker
is responsible for managing its connected nodes. Moreover, these brokers are
organized as a peer-to-peer networ using the DHT.

Unlike MQTT, the WoT.City broker does not export its nodes; it hides nodes
such that all nodes are internal and not visible externally.

As shown in Fig. 2, the DHT and Chord P2P Protocol are key components
of the peer-to-peer networks. In addition, web-to-web RPC (wwRPC) exists is
another key component of the WoT.City framework. The wwRPC component
offers REST-style RPC operations and collaborates with the DHT. As a result,
to enable such capabilities, the device must have a WoT.City application server
installed on it. Writing a WoT.City broker server is simple, as shown in Listing
2. The broker server starts and subsequently joins a peer-to-peer network.



Fig. 3. WoT.City framework network topology

Listing 2. Sample broker program code

// Require Broker class in Devify Platform
var DevifyBroker = require(‘devify.io’).Broker;

// To instantiate a broker server instance
var broker = new DevifyBroker({

host: ‘192.168.0.1’, port: 8000,
join: {address: ‘192.168.0.100’, port: 8000}

});

// To start the broker server
broker.start();

// The virtual node is up and listening

A broker server also offers periodic health and failure checks for nodes. As
mentioned previously, the broker hides all implementation details. Moreover,
as shown in Fig. 4, the broker server can forward request to an “endpoint.”
Ordinarily, the endpoint is a cloud-based REST API platform, such as Dropbox
and Twilio or another broker server.

As shown in Fig. 2, the Chord P2P Protocol component implements the Chord
peer-to-peer protocol. Chord is a protocol and algorithm for a peer-to-peer DHT.



Fig. 4. Example of request forwarding

A DHT stores key-value pairs by assigning keys to different nodes [8]. Chord
messages are sent to peer nodes via wwRPC. The dispatcher component receives
and dispatches these RPC messages. Another significant design of wwRPC is
that the dispatcher component uses an event-driven concurrency model to handle
RPC messages. Currently, many developers avoid the multi-thread model and
employ an event-driven approach to concurrency management [9]. Consequently,
due to the scalability limits of threads, wwRPC uses an event-driven model.

4. IoT Applications

WoT.City presents a software framework that simplifies the creation of IoT appli-
cations by reusing existing web technologies and applying the FBP programming
paradigm. For example, setting up a sensor node to gather information and
communicate with other nodes requires only a few lines of code. Moreover, to
build a complete peer-to-peer and decentralized IoT network also requires only a
few lines of code.

The FBP paradigm defines applications as networks and exchanges data across
predefined connections[10]. WoT.City utilizes the FBP paradigm for IoT applica-
tion development. Thus, the WoT.City software framework can be used to write
flow-based IoT applications.

Developers can write IoT application code using the FBP paradigm and
JavaScript. With the FBP paradigm, an IoT application is described by
components and their corresponding connections. As shown in Fig. 5, an



Fig. 5. Flowchain: FBP runtime engine

application is described as a “graph” in JSON format. Listing 3 shows this
implementation.

Listing 3. Flowchain application sample (the “graph”)

{
“type”: “coapBroker”,
“connections”: [

{
“upproc”: “io.devify.sms,
“upport”: “out”,
“downproc”: “io.devify.console,
“downport”: “in”

}
]

}

Flowchain internal is an FBP-like system in 100% JavaScript with a unidirectional
data flow design. Consequently, the Flowchain has a single output port and
a single input port. The unidirectional data flow reduces the complexity of
device interoperability. The “connection” is created from the “outPort” of one
component to the “inPort” of another component. The Flowchain runtime engine
is responsible for executing the “graph” and processing the data flow. Moreover,
the FBP components are highly decoupled; thus, developers can build and publish
the reusable components.

5. Conclusions

The mission of WoT.City is to establish an open-source project for decentralized
IoT software framework. Furthermore, WoT.City convergences emerging IoT
trends: (a) a full-stack JavaScript software framework, (b) device interoperability
via REST-style RPC operations, (c) a peer-to-peer network for a decentralized
IoT model, and (d) an FBP model for IoT applications. All work is available at
GitHub as open-source projects (Fig. 6).



Fig. 6. WoT.City open source project

Subsequently, IoT devices in a decentralized IoT network may require a new
model to exchange data. The data exchange model must be more secure and
ensure data privacy. Moreover, WoT.City has begun to build a blockchain-based
decentralized IoT platform.

Future work. Given the blockchain’s private ledger nature, it is natural that
WoT.City will use blockchain technology to provide secured and trusted data
exchange. In other words, WoT.City will use blockchain technology to maintain
trusted records of all data exchanged between devices rather than exchanging
data through a centralized IoT platform.

6. References

1. Soldatos, John (et al.): OpenIoT: Open Source Internet-of-Things in the
Cloud. In: Pro-ceedings of International Workshop on Interoperability and
Open-Source Solutions for the Internet of Things, pp. 13-25. Springer (2015).

2. Dave Raggett. An introduction to the Web of Things Framework. https:
//www.w3.org/2015/05/wot-framework.pdf

3. Mongoose full-stack IoT platform, https://mongoose-iot.com
4. Ultra-lightweight JavaScript engine for the Internet of Things, https://github.

com/Samsung/jerryscript
5. Flow-based programming, https://en.wikipedia.org/wiki/Flow-based_

programming

https://www.w3.org/2015/05/wot-framework.pdf
https://www.w3.org/2015/05/wot-framework.pdf
https://mongoose-iot.com
https://github.com/Samsung/jerryscript
https://github.com/Samsung/jerryscript
https://en.wikipedia.org/wiki/Flow-based_programming
https://en.wikipedia.org/wiki/Flow-based_programming


6. Web of Things Interest Group Charter, https://www.w3.org/2014/12/
wot-ig-charter.html

7. Buschmann, Frank, et al. Pattern-Oriented Software Architecture. John Wiley
& Sons Ltd, 1996.

8. Stoica, Morris (et al.): Chord: A scalable peer-to-peer lookup service for
internet applica-tions. ACM SIGCOMM Computer Communication Review.
31 (4): 149.

9. Welsh, M., Culler (et al.): SEDA: An Architecture for Well-Conditioned,
Scalable Inter-net Services. In Proc. 18th Symposium on Operating Systems
Principles (SOSP-18), Banff, Canada, 2001.

10. J. Paul Morrison: Data Stream Linkage Mechanism. IBM Systems Journal
Vol. 17, No. 4, 1978

https://www.w3.org/2014/12/wot-ig-charter.html
https://www.w3.org/2014/12/wot-ig-charter.html

	WoT.City: Decentralized Internet of Things Software Framework for a Peer-to-Peer and Interoperable IoT Device

